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Bond stiffening in small nanoclusters and its consequences for mechanical
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We have used density functional perturbation theory to investigate the stiffness of interatomic bonds in small
clusters of Si, Sn, and Pb. As the number of atoms in a cluster is decreased, there is a marked shortening and
stiffening of bonds. The competing factors of fewer but stiffer bonds in clusters result in softer elastic moduli
but higher (average) frequencies as size is decreased, with clear signatures of universal scaling relationships.
The stiffness of bonds is found to scale as the inverse tenth power of length. A significant role in understanding
trends is played by the coordination number of the bulk structure: The higher this is, the lesser is the relative
softening of elastic constants and the greater the relative damping of vibrational amplitudes for clusters
compared to the bulk. Our results could provide a framework for understanding recent reports that some
clusters remain solid above the bulk melting temperature. Our results suggest that Sn and Pb clusters (but not

Si clusters) are more thermally stable than the bulk.
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I. INTRODUCTION

With the emerging importance of nanotechnology, it has
become vital to know how the mechanical strength, thermal
stability, and chemical properties of very small objects com-
pare with those of macroscopic size. These properties depend
crucially on the stiffness of interatomic bonds, which deter-
mines how difficult it is to move atoms from their equilib-
rium positions—either in thermally induced vibrations or in
response to external forces.

In this paper, we suggest, using Si, Sn, and Pb as ex-
amples, that the shortening and stiffening of bonds in small
clusters may be significant enough to have a noticeable im-
pact on elastic and thermal properties. Our calculations pro-
vide evidence of some surprising scaling relations involving
the degree of bond stiffening as a function of bond lengths
and coordination number. We also suggest that our results
could present a framework for understanding recent
experimental > and computational®=® reports that some clus-
ters remain solid above the bulk melting temperature, in con-
tradiction to a long-held belief that small objects will melt at
lower temperatures than the bulk.”

Low-dimensional systems often display structures where
the coordination number (CN) is less than in the bulk struc-
tures of the same element. From general chemical principles,
one expects that such undercoordinated bonds should be
shorter and stiffer; however, the extent of this stiffening is
difficult to estimate accurately from simple arguments. It is
important to note that a stiffening of undercoordinated bonds
need not necessarily imply mechanical hardening and vibra-
tional damping. Even if bonds become stiffer, such systems
have fewer bonds per atom (compared to the bulk). There-
fore, it is crucial to have a gauge of the degree of bond
stiffening, since this will determine which of the two com-
peting factors (of stiffer bonds but fewer bonds) will prevail,
and thus decide whether or not low-dimensional systems
such as nanoclusters will be softer (harder) and less (more)
thermally stable than the bulk.

An enhancement in the stiffness of interatomic bonds has
previously been observed in some two- and one-dimensional
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systems, e.g., at the surfaces of metals,®? in thin films,'? and
in nanorods and nanotubes.!! Here, we investigate trends in
bond stiffness as a function of size and element in zero-
dimensional clusters that are small enough that their proper-
ties do not obey continuum scaling relations of the bulk and
surfaces. In order to study such effects theoretically, it is
crucial to have a method that can reliably reproduce the ef-
fects of changes in coordination number. Pair potentials, be-
ing insensitive to atomic coordination, are obviously inad-
equate, while semiempirical potentials usually have to be
tailored carefully if they are to describe such many-body
effects not merely qualitatively but also quantitatively. For
these reasons, in this work, we choose to perform quantum
mechanical density functional theory (DFT) and density
functional perturbation theory (DFPT) calculations.

We have chosen Si, Sn, and Pb because we wish to dem-
onstrate the crucial role played by the coordination number
of the bulk structure in determining the relative properties of
clusters and bulk. These three elements belong to the same
column of the Periodic Table but have different bulk struc-
tures, viz., diamond, B-Sn, and face centered cubic (fcc),
with CNs of 4, 6, and 12, respectively.

II. AB INITIO CALCULATIONS

We have studied the bulk as well as small clusters (num-
ber of atoms N <20) of Si, Sn, and Pb using DFT and DFPT
ab initio calculations, as implemented in the QUANTUM
ESPRESSO distribution.!> Norm conserving pseudopotentials
were used, together with a plane wave basis with a cutoff of
20 Ry. Exchange and correlation effects were treated within
the local density approximation (LDA) using the parametri-
zation by Perdew and Zunger.!> Calculations on the bulk
materials were performed for Si in the diamond structure, for
Sn in the body-centered-tetragonal -Sn phase, and for Pb in
the fcc structure. We have also performed calculations for Sn
in its diamond-structure a-Sn phase; however, these results
are not presented in detail here, both for conciseness and
relevance. The B-Sn phase makes the CN-dependent trends
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more clear and is also the high-temperature phase concerned
in the process of melting, the study of which was one of the
motivating factors for our work. For the reciprocal space
summations (k points) as well as for the wave vectors (g
points) for the DFT and DFPT calculations on the bulk sys-
tems, 10, 56, 163, and 256 points in the irreducible Brillouin
zone were used for Si, a-Sn, B-Sn, and Pb, respectively.
Periodic boundary conditions were used, and the clusters
were placed in a cubical box of side varying between 12 and
21 A, depending on the size of the cluster; this was sufficient
to remove any artificial interaction between periodic images.
The equilibrium structures of clusters were obtained by start-
ing from previously reported structures®!'#-1° and/or regular
polyhedral arrangements and relaxing using an eigenvector-
following technique?® that makes use of eigenvectors ob-
tained using DFPT and Hellmann-Feynman forces.

III. RESULTS AND ANALYSIS

The clusters we have studied are tiny enough that they do
not resemble bulk fragments structurally. The structures ob-
tained by us are, for the most part, very similar to those
obtained by previous authors.>'%~!° We have analyzed the
structures by examining coordination numbers and bond
lengths (interatomic spacings). We define the CN of an atom
as the number of neighboring atoms that lie within a cutoff
distance R_; we have verified that the trends presented in the
rest of this paper are not sensitive to the precise choice of R..
The mean CN of the cluster is then obtained by averaging
over all the atoms. In Figs. 1(a) and 1(b), we show how (C),
the average CN, and (L), the average bond length, vary with
N, the number of atoms in the cluster. We find that both (C)
and (L) indeed decrease (as expected) as N becomes smaller.
The shortening of bond lengths is particularly marked for
such small clusters, where all atoms are essentially surface
atoms, and bonds can contract freely, as there is no need to
maintain registry with a bulklike core; this is not true, e.g.,
for near-surface bonds at low-index faces of single crystals.
It is also noteworthy that the clusters of the three elements
display very similar structures, despite the diverse nature of
the three bulk phases; this may possibly be due to a transition
from metallic to covalent bonding at small cluster sizes, as
has been suggested for Ga.?!

In Fig. 1(a), note that the dashed line representing the
bulk CN is positioned differently relative to the curve of (C)
vs N for the three cases: for Pb, the former lies well above
the latter; for B-Sn, the former lies slightly above the latter;
whereas for Si, that (C) is smaller in the cluster than in the
bulk is true only for N=<6. This is of course a simple corol-
lary of the three different bulk structures of Si, 8-Sn, and Pb;
however, its consequences are consistently manifested in
three different kinds of behavior of the clusters relative to the
corresponding bulk, as we will demonstrate below. For ex-
ample, in Fig. 1(b), we see that the average bond length for
most Sn (Pb) clusters is less (much less) than the nearest-
neighbor bond length in the bulk, but for Si, this is true only
up to N=5.

Next, we use DFPT (Ref. 22) to compute the interatomic
force constant tensors (IFCTs), vibrational frequencies, and
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FIG. 1. Smaller clusters have, on average, lower coordination,
shorter and stiffer bonds, and higher frequencies. The dots show
how the average (a) coordination number (C), (b) bond length (L),
(c) vibrational frequency (w), and (d) radial force constant (83) vary
with N, the number of atoms in the cluster. The dashed horizontal
lines indicate the corresponding values for bulk Si, 8-Sn, and Pb;
note that these lines are positioned differently with respect to the
dots for the three elements.

eigenvectors for all the clusters, as well as for the bulk struc-
tures. We emphasize that this is an exact but computationally
efficient procedure, involving no fitting or assumptions about
the range or form of interatomic interactions or about the
directions of eigenvectors. Once again, clusters of the three
elements behave differently vis-a-vis the bulk: We find that
Sn and Pb clusters have vibrational frequencies that lie above
w,’:wx, the highest phonon frequency of the bulk; however,
this is not true for Si clusters (with the exception of N=3 and
N=20). As an example, we present the vibrational spectrum
for ten-atom clusters of Si, Sn, and Pb in Fig. 2, as well as
the corresponding bulk phonon density of states. Note that
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FIG. 2. (Color online) DFPT results for the vibrational spectra
of clusters and bulk. The thin vertical black lines indicate the vibra-
tional density of states (VDOS) for ten-atom clusters of Si, Sn, and
Pb, while the thick curves (red) indicate the phonon density of
states for the corresponding bulk material. The highest frequency
for the bulk is lower than that of the cluster for Sn and Pb (but not
for Si).
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FIG. 3. The black dots show our results for the radial force
constant 3 versus bond length L. Note that the data for each element
collapse onto a smooth graph. The stars represent the data for the
nearest-neighbor bonds in the bulk structure; one can see clearly
that bonds in bulk Si (but not in Sn and Pb) are stiffer than bonds in
the clusters. These graphs contain the data for all pairs of atoms in
all the clusters, corresponding to 870, 675, and 680 data points for
Si, Sn, and Pb, respectively.
the highest frequency mode for Sn,, and Pb,, exceeds wfm
by 32% and 73%, respectively, whereas for Sig, it is lower
by 7%.

In order to display trends more clearly, we fit the (exact)
IFCTs to a sum of pairwise radial and tangential terms. By
assembling the results for all pairs of atoms for all sizes of
clusters, we have, in this way, obtained a very large number
of results for radial force constants B as a function of bond
lengths L (depicted in Fig. 3). We find that B varies rather
smoothly as the inverse tenth power of L for all three ele-
ments. We are not aware of any simple explanation for the
origin of this power law behavior, and further work needs to
be done to examine this issue and to check whether or not it
is applicable also to other elements. We also wish to stress
that though the values of B presented here do involve an
approximation of the form of the interatomic interactions,
they are presented here primarily as a convenient way to
display trends; subsequent results for vibrational frequencies
and displacements (presented below) are obtained using the
exact IFCTs and not the approximate f3.

The average size-dependent behavior of force constants
and frequencies is shown in Figs. 1(c) and 1(d). We find that
the average vibrational frequency (w) and average radial
force constant (B) increase as N is decreased. Note again the
three different kinds of behavior relative to the bulk: in this
size range, clusters of Sn and Pb (but not Si) have stiffer
bonds and higher vibrational frequencies (on average) than
the corresponding bulk. It is also clear on examining the
panels of Fig. 1 that the size of the cluster below which
bonds become stiffer in the cluster than in the bulk is effec-
tively determined by the coordination number of the bulk
structure.

Though the Sn and Pb clusters have stiffer bonds than the
corresponding bulk [see Fig. 1(d)], there are fewer such
bonds per atom [see Fig. 1(a)]. These two effects compete in
determining the elastic and thermal properties. We find that
the latter effect dominates when we compute the elastic
modulus for dilation, which serves as a measure of hardness
and is defined as c,=*E/ 95, where E is the total energy
of the system consisting of N atoms, which has been dilated
or compressed by a factor (1+ 6); for the clusters, the dilation
was carried out about the center of mass. This definition of
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FIG. 4. Size dependence of the elastic modulus for dilation, c,.
N is the number of atoms in the cluster. The open circles, stars, and
filled triangles are the data for Si, Sn, and Pb clusters, respectively,
while the dashed, dotted, and dot-dashed lines represent the results
for bulk Si, B8-Sn, and Pb, respectively. Note that the clusters are
softer than the bulk, and the data for clusters of the three elements
appear to collapse onto a single curve.

an elastic modulus may appear somewhat unfamiliar; note
that it has dimensions of energy. We believe this to be ap-
propriate for zero-dimensional objects such as clusters, as an
extension of the fact that elastic moduli for three-, two-, and
one-dimensional objects are traditionally defined as having
dimensions of energy/(length)®, energy/(length)?, and
energy/length, respectively. It also has two further advan-
tages: (i) It sidesteps the need to define the volume of a
cluster (various formulations for defining the volume of a
nanosystem have been used in the literature, and we find that
the volume obtained can vary considerably upon the defini-
tion used, thus making any evaluation of elastic moduli that
incorporate definitions of volumes highly open to ambigu-
ity). (ii) The definition of c; used by us permits a direct
comparison between the cluster and the bulk, as ¢, can also
be precisely defined for a bulk system, with, in this case, all
bond lengths being scaled by a factor of (1+ 6). In Fig. 4, we
show how ¢, varies with N. As the size of the cluster is
increased, we find that ¢, increases; while these curves will
presumably approach the bulk values (horizontal lines) for
very large sizes, we are well below the regime where this
occurs. An unexpected and striking feature of this graph is
the data collapse for all but the smallest cluster sizes. For a
given N, the value of ¢, is the same for all three elements;
this is not true, however, for the bulk elements. We find that
this data collapse results from a scaling relation such that, for
a given CN, the bond stiffness multiplied by the square of the
bond length is approximately the same for all three elements.
Note also that while all the clusters are softer than the cor-
responding bulk, Pb clusters are hardest relative to the bulk
and Si clusters are the softest, in agreement with the trends
observed above.

The enhanced bond stiffness competes with the lesser
number of bonds also in determining the mean squared dis-
placements (MSDs) of atoms; however, we find that in this
case, it is the former and not the latter that wins out. Within
the harmonic approximation, the MSD of the ith atom in the
cluster and/or bulk at temperature T is given by:?3

o 1
|e;<)\|2(nk)\+ E) (1)

WD)=—3

Nikrne Mgy

where the vibrational frequencies wy, and eigenvectors eig\
are known from DFPT; k denotes the phonon wave vector
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FIG. 5. Trends and oscillations in vibrational amplitudes and
melting temperatures: (u,,,,) is the root-mean-squared displacement
at 300 K, averaged over all the N atoms of the cluster, and Tﬁl is the
Lindemann estimate of the melting temperature. The dots and
dashed lines are the calculated values for the clusters and bulk,
respectively. Note that for Sn and Pb (but not Si), the dots lie below
(above) the dashed line in the upper (lower) panel.

(k=0 for all cluster modes), Ny is the number of wave vec-
tors in the Brillouin zone, N runs over all modes at a given k,
«a specifies Cartesian directions, M is the atomic mass, % is
Planck’s constant, and ny, is the temperature-dependent
Bose-Einstein occupation factor. We find that, for a given
temperature T, (i) though there is some variation in the
MSDs among the different atoms in a cluster, there is an
overall trend toward smaller MSDs as the cluster size de-
creases [see Fig. 5(a)]; (ii) this variation is, however, non-
monotonic; (iii) the MSDs for most Sn and Pb (but not Si)
clusters are smaller than for the bulk. This is in contrast to
what is observed at the low-index surfaces of single crystals,
where, though the undercoordination of surface atoms leads
to an enhancement in some force constants,®® the MSDs at
the surface are still larger than in the bulk.%?*

Finally, we investigate the possible implications of our
results for the melting behavior of clusters. The conventional
argument has been that surface atoms have fewer neighbors
than bulklike atoms, and are therefore less constrained, re-
sulting in greater amplitudes of thermal vibration and lower
melting temperatures. This is in accordance with the fre-
quently observed phenomenon of premelting at flat surfaces
of single crystals® and would suggest that clusters (with
their large surface-to-volume ratio) should melt at lower tem-
peratures than the bulk. This view was supported by early
experiments and molecular-dynamics simulations on the
melting of clusters.”® However, the majority of these simula-
tions used pair potentials, e.g., Morse or Lennard-Jones,?%?’
and thus cannot incorporate any effect of bond stiffening.
Moreover, recent experiments on size-selected clusters of Sn
and Ga suggested that some clusters melt at temperatures
above the bulk melting temperature.> These experiments
were initially motivated? and later confirmed*-® by ab initio
molecular-dynamics simulations, which showed that certain
clusters of Sn and Ga are solid above the bulk melting tem-
perature Tfn However, it has not been clear whether such
results hold only for sizes corresponding to particularly
stable atomic arrangements and whether they can be ex-
tended to other elements.
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As a rough indicator of the consequences of bond stiffen-
ing on melting behavior, we have computed the Lindemann
melting temperature T,L,L using a generalized form?’ of the
Lindemann criterion, which states that objects melt when
vibrational amplitudes become equal to a critical fraction A
of interatomic distances:

A= 1 D {(u}) + (ulz) — 2uu )} |

Nb\r,.j|<RC (i)

(2)

Here, (r;;) is the mean value of the distance between atoms i
and j, and N, is the number of bonds shorter than the cutoff
distance R.. We have chosen A=0.13; though the precise
numerical results depend on this choice, we have verified
that the trends displayed are robust. We first computed Tan for
the bulk phases [dashed lines in Fig. 5(b)] obtaining values
of 1350, 537, and 588 K for Si, 8-Sn, and Pb, respectively,
in fairly good agreement with the experimental melting tem-
peratures of 1680, 505, and 600 K. The underestimation of
Tf’n for Si is a well-known feature of the LDA, and our esti-
mate is in excellent agreement with the result obtained using
a more sophisticated treatment.?

The dots in Fig. 5(b) show our results for T; for clusters
as a function of N. (This is only an approximate indicator of
melting temperature, both because of the empirical nature of
the Lindemann criterion and because of the broad nature of
the melting transition in finite-sized systems. Moreover, in
some clusters, the melting temperature may be preempted by
fragmentation.”®) From Fig. 5(b), we see that huge oscilla-
tions are superposed on an overall trend where T,Ln increases
as N decreases.

The trends we have observed for the clusters relative to
the bulk are maintained here, too [compare the dots and
dashed lines in Fig. 5(b)]; i.e., for Sn (Pb), most (all) clusters
in this size regime have T,Ln above that of the bulk, whereas
for Si, the majority of clusters have T; below the bulk. For
Sn, this is in qualitative agreement with experimental and
computational findings,'~® while we offer our results of en-
hanced melting temperatures for Pb clusters as a prediction
awaiting experimental validation.

The puzzling oscillations in Fig. 5(b) are reminiscent of
those observed in the size dependence of the melting tem-
perature of Na clusters,” which could not be explained by
either geometric or electronic shell closing arguments. We
find that these oscillations in TZ result primarily from oscil-
lations in the value of the lowest vibrational frequency w,,;,,.
As an example, in Fig. 6, we present the results for the size
dependence of both w,,;,, and T% for Sn clusters. Unlike (),
,,i, Varies nonmonotonically with N, is very sensitive to the
exact structure, and reflects variations in tangential force
constants. It is clear from Fig. 6 that the oscillations in the
lowest nonzero frequency are reflected in the Lindemann
melting temperatures. A similar effect is also observed for Si
and Pb clusters.

IV. SUMMARY AND CONCLUSIONS

In summary, we have computed the structure and vibra-
tional properties of clusters and bulk of Si, Sn, and Pb, and
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FIG. 6. The oscillations in the Lindemann melting temperature
reflect those in the value of the lowest vibrational frequency. The
filled and open circles represent, respectively, the data for Tﬁl and
,,in Tor Sn clusters as a function of the number of atoms N in the
cluster.

shown the presence of clear size-dependent trends. We have
found that for Sn and Pb, bonds in clusters are shorter and
stiffer than in the bulk, and this, in turn, suggests that small
clusters of Sn and Pb melt at higher temperatures than in the
bulk; for Sn, this is in agreement with previous experiments
and molecular-dynamics simulations. However, for Si, we
find that the bonds in clusters are slightly longer and softer
than in the bulk, and that Si clusters melt at temperatures
below the bulk.

Interestingly, we find that if the comparison for Sn clus-
ters were to be made not with B-Sn but with the low-
temperature phase of diamond-structure @-Sn (which, in re-
ality, transforms to 3-Sn before it melts), the behavior of Sn
would be similar to that of Si, i.e., the clusters would have
lower vibrational frequencies and softer bonds and melt at
lower temperatures than the bulk.

We have also found evidence for two scaling relations: (i)
the stiffness of a bond scales as the inverse tenth power of
the bond length and (ii) the elastic modulus for dilation (de-
fined in the previous section) depends on size but not on
element for Si, Sn, and Pb. At present, we do not have a
complete understanding of where these relations arise from;
further work in this regard is in progress.

The main approximation made in our work and analysis is
the use of the empirical Lindemann criterion as a gauge of
melting temperatures. The melting temperature is anyway
not precisely defined for finite systems which do not display
a sharp transition; typically, in calorimetric experiments and
molecular-dynamics simulations, the melting temperature is
given as the temperature where the specific heat capacity
reaches a maximum. While we do not, therefore, place too
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much weight on our numerical values of TZ, we do believe
that they serve as a good indicator of comparative trends for
size and element dependence and for the behavior of clusters
relative to the bulk. The broad specific heat curves seen in
experiments and simulations also contain information about
structural transitions between various low-lying isomers.
Transitions between these local minima in the energy land-
scape are controlled at lowest order by the stiffness of the
basins, i.e., the frequencies of vibrational modes. Since the
CN does not, typically, vary significantly among these low-
lying isomers, our general arguments should prevail also if
one defines melting as a transition between various meta-
stable configurations (rather than a transition from the liquid
to the solid state) and if one accounts for the fact that at finite
temperatures, even monodisperse clusters may display a va-
riety of structural configurations.

Our work also provides an explanation for the puzzling
oscillations observed in the size dependence of the melting
curves for clusters.” We suggest that a low melting tempera-
ture correlates with the presence of a soft vibrational mode
for a cluster; note that this also implies the presence of a
low-energy route for structural isomerization.

Most of the trends displayed in this paper are shown to
track along with changes in coordination number. It is note-
worthy that this seems to apply to both metallic and co-
valently bonded systems. The results and analysis presented
above suggest persuasively that the differences (in the com-
parative behavior of clusters and bulk) between Si, Sn, and
Pb can be attributed to differences in bulk structure; our ar-
guments are general enough that we believe they should be
valid for a variety of elements. Our results lead to the fol-
lowing rules of thumb: The larger the coordination number in
the bulk, the less the relative softening in the elastic moduli
of small clusters and the more likely it is that such small
clusters are stable at temperatures above that where the bulk
melts. In accordance with this understanding, we note that a
very recent molecular-dynamics simulation®® suggests that
Au clusters have a melting temperature above that of bulk
(fec) gold.
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